Contact Mechanics

Eric Magel National Research Council, Canada

PRINCIPLES COURSE · JUNE 22

National Research Council Canada Conseil national de recherches Canada

Outline

- Contact models Hertzian contacts
- Pummelling
- Surface Roughness
- Creepage/slip, Creep forces including thirdbody layers
- Shakedown
- Conformality
- Equivalent Conicity
- Conclusions

Fundamentals of Contact Mechanics

PRINCIPLES COURSE · JUNE 22

National Research Conseil national de Council Canada recherches Canada

Hertzian contacts

National Research Council Canada Conseil national de recherches Canada

Hertzian Line Contact

$$P_o = \left[\frac{P'E^*}{\pi R}\right]^{1/2}$$

P'=P/t = load per unit length $R = (1/R_1+1/R_2)^{-1} = effective radius$ $E^*=combined \ elastic \ modulus$

National Research Conseil national de recherches Canada

Line Contact Stress Field

The stress field appears the same in any parallel plane, i.e. "plane stress"

7

- e.g.
 - sphere on flat
 - sphere on sphere
 - two cylinders
 crossed at right
 angles

Hertzian Formulae

	Line Contact Width 2b, Load P' per unit length	Circular Contact (diameter 2a, load P)		
Semi-contact width or contact radius	$b = 2 \left[\frac{P' R}{\pi E^*} \right]^{1/2}$	$a = \left[\frac{3}{4} \frac{PR}{E^*}\right]^{1/3}$		
Maximum contact pressure ("Hertz Stress")	$P_o = \left[\frac{P' E^*}{\pi R}\right]^{1/2}$	$P_{o} = \frac{1}{\pi} \left[\frac{6PE^{*2}}{R^{2}} \right]^{1/3}$		
Approach of centers	$\delta = \frac{2P'}{\pi} \left\{ \frac{1 - v_1^2}{E_1} \left[\ln \frac{4R_1}{b} - \frac{1}{2} \right] + \frac{1 - v_2^2}{E_2} \left[\ln \frac{4R_2}{b} \right] - \frac{1}{2} \right\}$	$\delta = \frac{a^2}{R} = \frac{1}{2} \left[\frac{9}{2} \frac{P^2}{RE^{*2}} \right]^{1/3}$		
Mean contact pressure	$\frac{-}{p} = \frac{P'}{2b} = \frac{\pi}{4} P_o$	$\overline{p} = \frac{P}{\pi a^2} = \frac{2}{3} P_o$		
Maximum shear stress	$\tau_{\text{max}} \cong 0.30 P_o$ at (x=0, z=0.78b)	$\tau_{\rm max} \cong 0.31 P_o$ at (r=0, z=0.48a)		

Most contacts are non-Hertzian

Generally: Hertzian assumption is not too bad: ±20%

National Research Council Canada Conseil national de recherches Canada

Terminology

Wheel/rail stresses

- Stress and damage • depend on:
 - wheel radius
 - wheel load
 - friction coefficient
 - wheel/rail profiles (contact geometry)

11

Contact stress calc. - TOR

• Steel wheel on Steel rail $E^* = \begin{bmatrix} E^* \end{bmatrix}$

$$E^* = \left(\frac{1-v_1^2}{E_1} + \frac{1-v_2^2}{E_2}\right)^{-1}$$

13

 $v_1 = v_2 = 0.29$, $E_1 = E_2 = 200 \ GPa \rightarrow E^* = 109 \ e9 \ Pa = 1.58 \ e7 \ psi$

- 8" (200mm) rail head radius
- New tapered wheel profile
- Wheel radius is 480mm (≈19") R_{WL} = 0.480m
- Wheel load is 18000 kg $X 9.81 \approx 176.6 \text{ kN} = P$

National Research Council Canada Conseil national de recherches Canada

 $\mathbf{R}_{\mathbf{RT}} = 0.200 \text{m}, \mathbf{R}_{\mathbf{RL}} = \infty$

Complete calculation

$$R_{T} = \left(\frac{1}{R_{RT}} + \frac{1}{R_{WT}}\right)^{-1} = \left(\frac{1}{0.20} + \frac{1}{\infty}\right)^{-1} = 0.20 \text{m}$$

$$R_{L} = \left(\frac{1}{R_{RL}} + \frac{1}{R_{WL}}\right)^{-1} = \left(\frac{1}{\infty} + \frac{1}{0.480}\right)^{-1} = 0.480 \text{m}$$

$$R = \sqrt{R_{T}R_{L}} = \sqrt{0.20 \times 0.480} = 0.31$$

$$P_{O} = \frac{1}{\pi} \left[\frac{6 \times 176,600 \times (109e^{9})^{2}}{0.31^{2}}\right]^{1/3} = 1616 \ e^{6} \text{ Pa}$$

$$a = \left[\frac{3}{4} \frac{176600 \times 0.31}{109e^{9}}\right]^{1/3} = 0.00722 \text{ m} = 7.22 \text{ mm} \rightarrow 14.5 \text{ mm} \text{ diam}, 9/16''$$

$$\Re = 20222$$

.

-1/3

Hertzian Contacts – Sign Convention

Contact stress calc. – rail shoulder

- 32 mm radius $\mathbf{R}_{\mathbf{RT}} = 0.032 \text{m}, \mathbf{R}_{\mathbf{RL}} = \infty$
- 38 mm flange root radius $R_{WT} = -0.038 m$
- Wheel radius is 240 mm $\mathbf{R}_{WL} = 0.240 \text{m}$

$$\mathbf{R}_{\mathbf{L}} = 0.240 \text{m}$$
$$\mathbf{R}_{\mathbf{T}} = \left(\frac{1}{0.032} - \frac{1}{0.038}\right)^{-1} = 0.2027$$
$$R = \sqrt{0.240 \times 0.2027} = 0.221$$

Complete calculation

$$P_o = \frac{1}{\pi} \left[\frac{6PE^{*2}}{R^2} \right]^{1/3} \qquad P_o = \frac{1}{\pi} \left[\frac{6 \times 88290 \times (109e^9)^2}{0.221^2} \right]^{1/3} = 1608 \ e^6 \text{ Pa}$$

$$a = \left[\frac{3}{4} \frac{PR}{E^*}\right]^{1/3} \qquad a = \left[\frac{3}{4} \frac{88290 \times 0.221}{109e^9}\right]^{1/3} = 0.00512 \text{ m} \equiv 5.12 \text{ mm} \rightarrow 10.24 \text{ mm} \text{ diam, } 13/32$$

HertzWin 3.3.1	HertzWin 3.3.1	Image: HertzWin 3.3.1 − ×			
Material propertie	Material properties	Material properties			
_ Body 1	r Body 1	Body 1 Edit material			
Select material	Select material	Select material V Select material V Force			
Young's modulus	Verse's medulus	Young's modulus 200 GPa Young's modulus 200 GPa Normal 88290 Newton			
Poisson la mitia	Young s modulus	Poisson's ratio 0.29 Poisson's ratio 0.29			
Poisson's ratio	Poisson's ratio	Maximum stress 255 MDa Maximum stress 255 MDa			
Maximum stress	Maximum stress	Maximum scress 333 MPa Maximum scress 333 MPa			
Dimensions and co	Dimensions and cor	Dimensions and contact type			
Circular/elliptical	Circular/elliptical co	Circular/elliptical contact O Line contact			
Body 1	Body 1	Body 1 Body 2			
Radius 1x 100000	Radius 1x 1000000	Radius 1x 10000000 mm Radius 2x 240 mm Infinite			
Radius 1y 225	Radius 1v 32	Radius 1y 300 mm Infinite Radius 2y 50 mm Infinite			
Roughness 0	Roughness 0	Roughness 0 um Contact			
		F normal			
Angle 0 deg	Angle 0 degre	Angle 0 degrees Angle			
Results	Results	Results			
Contact radius a	Contact radius a	Contact radius a 6.699 mm Tensile stress at radius a 396.7 MPa			
Contact radius b	Contact radius h	Contact radius b 2.155 mm Tensile stress at radius b 254.2 MPa			
Hertz contact stress	Hertz contact stress	Hertz contact stress 2920 MP Impression 147.7 um Y + 2a			
Max, shear stress 1	Max, shear stress 1	Max. shear stress 1 953.2 MPa Hertz contact stiffness Cz 8.97E08 N/m			
Max. shear stress 2	Max. shear stress 2	Max. shear stress 2 953.2 MPa Elastic energy 5.22 J Lifetime			
	PRINCIPLES	COURSE • JUNE 22 National Research Council Canada Conseil national de recherches Canada WRI 2022			

Rail/Wheel: Hertzian Contact Stress (MPa)

$$P_o = \left(\frac{6PE^{*2}}{\pi^3 R_e^2}\right)^{1/3} \times \left[F_1 (R_L / R_T)^{-2/3} \right]$$

spherical contacts

accounts for ellipticity

	Traverse Radius		Load, Wheel Radius					
Location	Rail (mm)	Wheel (mm)	18 T 480	onnes I mm	18 Te 240	onnes) mm	9 To 240	nnes mm
Rail Crown	+200	-300	1130	(1.00)	1438	(1.27)	1141	(1.01)
	+75	-100	1428	(1.26)	1794	(1.59)	1424	(1.26)
	+100	-300	1819	(1.61)	2267	(2.01)	1800	(1.59)
	+200	infinity	1645	(1.46)	2053	(1.82)	1629	(1.44)
Rail Shoulder	+32	-38	1637	(1.45)	2043	(1.81)	1622	(1.44)
	+32	-44	1984	(1.76)	2469	(2.18)	1960	(1.73)
Flange Root	+8	-9.5	2678	(2.37)	3317	(2.94)	2632	(2.33)
False Flange	+300	+50	2845	(2.52)	3520	(3.12)	2794	(2.47)

Elastic loading of quarter space

Surface Damage and Pummelling

Pummelling

PRINCIPLES COURSE · JUNE 22

The influence of

SURFACE ROUGHNESS

PRINCIPLES COURSE · JUNE 22

National Research Council Canada conseil national de recherches Canada 4

Surface Roughness

On a microscale, all surfaces are rough

from Dagnall H, *Exploring Surface Texture*, Rank Taylor Hobson (1980).

PRINCIPLES COURSE · JUNE 22

National Research Council Canada recherches Canada

Contact between real surfaces

- Real area of contact is much smaller than the nominal area
- Apparent area:

$$A_A = ab$$

• Real area

$$A_R = \sum_{i=1}^n A_i$$

• Pressure = load/area

PRINCIPLES COURSE · JUNE 22

National Research Council Canada conseil national de recherches Canada

Contact Stress

• Elastic contact models can be applied with errors of only a few percent if the combined roughness of the two surfaces is less than about 5% of the bulk elastic compression, i.e.

$$\alpha \equiv \frac{\sigma}{\delta} = \sigma \left(\frac{16E^*R}{9P}\right)^{1/3} < 0.05$$

KL Johnson, <u>Contact Mechanics</u> Section 13.5

WRI 2022

28

• Hertzian spring: 0.05 - 0.15 mm => $2.5 - 7.5 \mu$ m

Effect of wheel load and wheel radius

200mm rail crown radius 457 mm wheel radius (36" diam)

Cutting wheel diam in half increases roughness threshold by approx. 1 micron

Roughness threshold (microns)

Wheel load		Wheel radius (in/m)		
klb	kg	18/0.457	9/0.229	
6600	3000	3	3.5	
19800	9000	7	7.5	
33000	15000	9.5	10.5	

PRINCIPLES COURSE · JUNE 22

National Research Conseil national de Council Canada recherches Canada

Roughness from rail grinding

"Rough" grinding

May contribute to noise and vibration, corrugation, RCF and squats/studs

PRINCIPLES COURSE · JUNE 22

National Research Council Canada Conseil national de recherches Canada

31

The rough wheel and wheel climb

T. Ban et al, A study on the coefficient of friction between rail gauge corner and wheel flange focussing on wheel machining, Proceedings International Wheelset Congress, Orlando, 2004

PRINCIPLES COURSE · JUNE 22

 National Research Conseil national de Council Canada recherches Canada

Surface Roughness - conclusion

- Important
 - high frequency phenomena (noise, vibration)
 - Deformation of the micro-surface layer
- Little impact
 - bulk contact stresses
 - Wheel/rail forces
- Wheel roughness ↔ wheel climb ??
- Rail corrugation: \pm 30% on hertz stress

CREEPAGE/SLIP

National Research Conseil national de recherches Canada

From AH Wickens (1978), Dynamics and the Advanced Passenger Train

Longitudinal Creepage

1% creepage

Under traction: 1.01 revolutions of wheel to travel 1 circumference (e.g. 363.6° vs 360°)

 National Research Conseil national de Council Canada recherches Canada

Creepage in a single wheel/rail contact

Longitudinal Creepage $\psi_{X} = \frac{V_{2} - V_{1}}{V_{1}}$

Lateral Creepage

 $\psi_{Y} = \frac{\delta V_{Y}}{V_{1}} = \tan \gamma$

Spin Parameter

$$\Phi = \omega \frac{(ab)^{1/2}}{V_1 R} = \left(\frac{(ab)^{1/2}}{R}\right) \tan \lambda$$

National Research Council Canada Conseil national de recherches Canada

Stick and Slip in the Contact Patch

Elastic deformation in rolling bodies in stick and slip regions in rolling sliding contact

THIRDBODY LAYERS AND THE TRACTION-CREEP RELATIONSHIP

Third-body layer

 phosphate, salts, etc.
 LAYERS: Any microscopic
 mixture of solid and semi-solid

particles

- Petrochemical:

oil, soap, grease

moly, graphite

- Chemical:

- Solid / mechanical:

 National Research Conseil national de Council Canada recherches Canada

Thirdbody layer

PRINCIPLES COURSE · JUNE 22

National Research Council Canada Conseil national de recherches Canada

Wheel/rail tractioncreepage curve

Field Tests (Logston & Itami 1980)

National Research Council Canada recherches Canada

COF (µ) at TOR/wheel-tread contact

PRINCIPLES COURSE · JUNE 22

Stick-Slip - The prony brake

Wheel/rail stresses

- Vertical, longitudinal, and lateral forces
- Lead to a complex stress field
 - Compressive, tensile and shear stress components
- P₀ is maximum normal contact stress
- Important stresses = $\tau_{zx,} \tau_{zy}$
 - The stress on the z plane in the x and y direction
 - Cause shear of rail surface

PRINCIPLES COURSE · JUNE 22

National Research Conseil national de Council Canada recherches Canada

Effect of shear stress

Figure 14.(c): Ratcheting Strains in Rail Material Caused by Large Longitudinal Creep Forces Between Wheel and Rail

WRI 2022

PRINCIPLES COURSE · JUNE 22

SHAKEDOWN

National Research Conseil national de recherches Canada

CONFORMALITY

National Research Conseil national de recherches Canada

Conformality

- closely conformal (as per hertzian spring)
 - 0.1 mm (0.004") or less
- conformal
 - 0.1 mm to 0.4mm
 - (0.004" to 0.016")
- non-conformal
 0.4 mm (0.016") or larger

National Research Council Canada Conseil national de recherches Canada

Conformality

Wheel and rail profiles - conformality between the wheel and high rail

Conformality Analysis [™]

Conformality Analysis summary - sharp curves

EQUIVALENT CONICITY

PRINCIPLES COURSE · JUNE 22

The Free Wheelset - Hunting

Rolling Radius Difference

PRINCIPLES COURSE · JUNE 22

59

Why do we care?

Effects

- Hunting
- Lateral Forces
- Wheel/rail wear
- Wheel/rail RCF
- Corrugation
- Noise
- Vibration

Consequences

- Comfort, lading damage, safety
- Safety (Wheel climb, rail rollover)
- Economics, V/T availability
- Safety, inspection, maintenance
- V/T damage, maintenance
- Comfort, health
- V/T damage

PRINCIPLES COURSE · JUNE 22

National Research Conseil national de Council Canada recherches Canada

Conclusions

- Hertzian contacts
 - Linear elasticity line, point and elliptical contacts
 - These calculations are "reasonable"
 - Lesson: don't rely too much on absolute numbers
- **Pummelling** need to consider whole range of profiles/conditions borne by rail/wheel
- Roughness generally not a contributing factor re contact stress
- Wheel and rail (transverse) **profiles** control contact stress

Conclusions – cont'd

- Friction raises the stress levels (and damage) considerably
- Stick and slip regions in the contact patch
- The wheel most always slips on the rail
- **Negative Friction** is a root cause of much noise, vibration, corrugation
- Shakedown, conformality and effective conicity useful methods to assess compatibility
- It is worth investing in contact mechanics to "get things right"

THANK YOU

Eric.Magel@nrc-cnrc.gc.ca National Research Council, Canada

PRINCIPLES COURSE · JUNE 22

National Research Council Canada Conseil national de recherches Canada

